

MAST CTA Opportunities Day Briefing

Processing for Autonomous Operation

Outline of Presentation

- Vision & challenges
- Research Issues:

Navigation & Control

Efficient information extraction

Collaborative Processing

Networking

Conclusions

Semi- & fully autonomous micro-systems that are capable of:

- Multi-modal sensing
- Mobile networking
- Distributed signal processing and fusion
- Group collaborative behavior and navigation
- Learning and consensus building
- Survival and extended lifetime
- Interface with, and take advantage of, macro-level systems

Under micro-platform limitations on weight, power, bandwidth, and mobility.

Example Research Topics

Micro Autonomous Systems and Technology

Microsystem Mechanics

- Platform stability & control
- Low Reynolds number aerodynamics
- Bio-inspired subsystems
- Propulsion and linear actuation
- •
- •
- .

Processing for Autonomous Operation

- Autonomous navigation and control
- Efficient information extraction and utilization
- Dynamic collaborative processing
- Cross-layer communications and network design
- •
- .
- .

Microelectronics

- 3D materials and circuit architectures
- Sensors and actuators for platform and payload
- Smart, multifunctional materials
- Low power devices and small electric power management
- .

Platform Integration

- Microsystem architectures, modeling, and design tools
- Experimentation and analysis
- Sub-system interactions
- Multi-functional packaging
- •

Challenges - 1

- Mobility, sensing, processing, & comms per Joule
 - tight coupling across architecture and function
- Differentiating size, weight, power, performance regimes
 - fundamental and technology limits
- Lifetime & associated tradeoffs
- Sensor & information utility, and bandwidth constraints

Challenges - 2

- Heterogeneous nodes, modularity, architecture
- Intra- vs inter-node processing & communications load
- Degree of reliance on centralized network & processing
 - robust communications and networked control

Ultimately: Exploration and complex group behaviors in unknown environments

Example Complex Behaviors

Map & navigate

Interact with mothership

Search & identify, follow

Cooperative sensing & communications

Collaborative behavior:
e.g., deliver battery,
provide comms relay,
verify medical condition

Hide & perch, trip wire

Extend lifetime via sleep

- Span Command & Control to Connect & Collaborate
- Human interface, semi-autonomy, full autonomy
- Position (geolocation) and synchronization event timing, navigation, communications
- Exploration & Navigation
 active vs passive sensing, mapping
- Control architecture & communications interplay distributed vs centralized robust control
- Bio-inspired paradigms

- Integrated efficient intra-node sensing and processing
- Multi-modal sensor utility power, processing load, bandwidth tradeoffs
- Energy efficient information extraction and reduction e.g., sufficient statistics, compression
- Sensor, controller, actuator management

Balance intra-node information extraction and reduction versus communications cost.

Ex. Res Issues: Dynamic Collab. Processing

- Balance distributed sensing, distributed processing, and communications load
- Distributed consensus building
- System utility vs lifetime
- Interaction with macro-level system(s)
- Cooperative group behavior e.g., exploiting mobility

- Fundamental limits and analytical design techniques unknown
- Network architecture, heterogeneous nodes
- Adaptive networking, cooperative comms, relays
- Network set-up and maintenance
- Radio:

Analog / digital, complexity vs robustness & security small RF aperture, antennas propagation, penetration, wavelength

- Communication modalities (e.g., acoustic, optical)
- Dual sensing & comms modalities implicit communications, e.g., through (in-) action

Principles of MAST Processing

Balance communications load against performance.

Integrate networking, positioning, navigation, & control.

Integrated resource management, and lifetime extension.

Tight coupling with devices & technology, seeking fundamental (and achievable) limits and tradeoffs.

Adapt to different size/weight/power regimes.

Power and energy savings critical.

Balance autonomy, human, and machine interaction.